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Abstract- Bispectrum has been widely used to enhance the 
SNR. This is based on the assumption that the HOS properties 
of the signal of interest are different to the HOS properties of 
the noise. In the present work, we consider the use of 
Bispectrum techniques when repeated measurements are 
made of a deterministic signal embedded in random noise 
where SNR is in the range from -17dB up to 0dB. The 
performance of estimators and reconstruction algorithms are 
evaluated using simulated evoked potential data. We conclude 
that the best performance is achieved if we reconstruct the 
phase by bispectrum and amplitude through a second order 
method such as ‘Spectral Subtraction’. 
Keywords- Bispectrum Reconstruction, SNR Enhancement, 
ABR 

 
I. INTRODUCTION 

 
Many authors have investigated the technique of 

bispectrum averaging to improve the signal-to-noise ratio of 
signals that are heavily corrupted with noise [1,2,3]. The 
method is based on recovering deterministic signals from the 
averaged bispectrum of noisy observations of the signal.  
These researchers have considered cases where SNR is better 
than 0dB. This paper emphasizes on the situations where the 
SNR is in the range from -17dB up to 0dB. This value of the 
SNR is very typical in the recording of Auditory Brainstem 
Response (ABR) in clinical applications.  
In this communication, it is assumed that a large number N of 
a deterministic signal s(t) are observed with a random delay in 
a noisy environment. In our application the deterministic 
signal will be ABR. 
Each realization )(txi  is modeled using the following 
expression: 
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where )(tni  is the background noise assumed to be guassian 
and N is the number of data points per response. We 
simplified the ABR model introduced in [4] and simulate the 
ABR as follows: 
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where )(tρ  represents the basic peak component of the ABR 
waveform, P stands for the number of peak components 
involved in the ABR waveform, )( j

iii band ττ  are random 
variable for the latency and vertical shift of the jth 
component.   
In the simulation, N = 256 (A typical number in clinical 
recording of ABR), P = 5, ja = [0.7 0.5 0.8 1 0.9], iτ  a 

random delay with gaussian probability density function of 
mean zero and standard deviation of 4.0±  ms and )( i

j
ib τ  

is a gaussian delay of zero mean and standard deviation of 
0.075.  
A Fourier filter same as [4] is used to smooth the simulated 
signal. The following autoregressive model simulates the 
background noise: 
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Using the samples generated by the model, in the following 
sections we will evaluate the performance of different 
bispectrum estimators and then compare the reconstruction 
methods for recovery of Fourier phase and amplitude from 
bispectrum. 

 
II. METHOD 

 
A. Evaluation of the Estimators 

 
For the evaluation of different Bispectrum estimators, the 
performance on suppression of additive guassian noise is 
compared. 
We estimate the Bispectrum of )(txi  by three estimators: 
Direct estimator, Unbiased Indirect estimator and Biased 
Indirect estimator. For the analysis, we estimate the 
Bispectrum of )(txi  and average the Bispectrum. If there are 
R realizations we then have [5]: 

l)(k,B )l,k(B l)(k,B̂
R

1
ns

R

1r

(r)
x +=∑

=

                        (5) 

Because the noise is gaussian, in ideal situation l)(k,Bn  is 
zero. Due to finite data length used to estimate the 
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)l,k(Bx  and there is always an estimation error l)(k,x∆ : 
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To show the influence of suppression of additive gaussian 
noise the ratio of error l)(k,x∆  to true value )l,k(Bx  in 
different SNR is calculated. 
In ideal situation )l,k(Bx  shall be equal to )l,k(Bs  so by 
using (6) we can estimate the error as follows: 
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The test ratio is defined as: 
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B. Evaluation of the Reconstruction Methods 
 
The Bispectrum reconstruction methods have been introduced 
and investigated by many authors, but again they have been 
assessed for SNRs better than 0dB. As part of this work the 
performance of Bispectrum reconstruction methods have been 
evaluated for low SNRs. We analyzed the Fourier phase 
reconstruction and Fourier amplitude reconstruction from the 
bispectrum separately in order to find out which one is more 
prone to noise. The correlation coefficient as defined in [6] 
was selected as performance criteria for the reconstruction 
method. 
 
 

III. RESULTS 
 

Using the samples generated by the models defined by (2) and 
(3), the ratio R was calculated for different estimators, in SNR 
from –15dB to 3dB. The test was done 10 times and the ratios 
were averaged. Figure 1 shows the result. As can be seen the 
Biased Indirect Estimator has the lowest error. 
 

 
Figure 1- Averaged Normalized Estimation Error. 

 
In order to evaluate the reconstruction methods, two phase-
reconstruction and two amplitude reconstruction methods 
were evaluated on a 300 simulated data set at SNRs between 
–16dB up to 0dB.  

The Mastsuoka-Ulrich [1] and a recursive method that uses 
information of averaged signal [2] were implemented on the 
same set of data. In order to assess the performance of phase 
reconstruction algorithms independently, the true amplitude 
of simulated ABR was used. Figure 2 and 3 show the 
reconstructed signals using the abovementioned methods.  
 

 
Figure 2- Evaluation of phase reconstruction by MU method. (a) True ABR, 
Reconstructed signal by (b) simple averaging (c) MU method 

 
Figure 3- Evaluation of phase reconstruction by recursive method using 
averaged signal information [2]. (a) True ABR, Reconstructed signal by (b) 
simple averaging (c) recursive method. 

The much better performance of the recursive method is 
obvious. Figure 4 shows the reconstructed signal using 
recursive phase and true ABR amplitude at different SNR 
levels. As seen the SNRs has minimum effect on this phase 
reconstruction method. 



 

 

Same as phase reconstruction, two amplitude reconstruction 
methods, the closed-form approach [3] and the Least-Square 
[3] approach were simulated and the true phase was used to 
reconstruct the signals. Due to low SNR both algorithms 
could not provide the desired responses and failed. Figure 5 
shows the reconstructed signal by LS approach at SNR = -12 
dB. The result obtained is not satisfactory. 
To reconstruct the amplitude, we considered the use of a 
second order method rather than higher order [7]. This 
method shall (1) increase the SNR and (2) be insensitive to 
linear phase shift (which is common in sequential ABR 
measurements). The ‘Spectral Subtraction’ method was 
selected to reconstruct the amplitude. This method requires 
estimation of the background noise spectrum. Recording the 
pre stimulus data to estimate the noise spectrum in clinical 
application can do this. It is obvious that the phase 
information is lost by this method but we reconstruct the 
phase using Bispectrum. 
 

 
Figure 4- Evaluation of phase reconstruction by recursive methods at 
different SNRs.  (a) –16 dB (b) –15 db (c)-13 dB (d) –7 dB (e) –2 dB (f) 0 dB 

 
Figure 6 shows the reconstructed signal by combining the 
‘Spectral subtraction’ method for amplitude recovery and 
Recursive phase. The ABR peak locations and amplitudes are 
much better revealed by these methods than the averaging. 
To compare the performance of this method to simple 
averaging, the following test was executed: 
10 separate data sets of 300 signals (ABR + Noise) were 
generated for each different SNRs between -18dB up to 0dB. 
Signals were reconstructed using the proposed method and 
simple averaging. The correlation coefficient between the 
reconstructed signals and the true ABR were calculated and 
averaged for each data set. Figure 7 shows the averaged 
correlation coefficient against different SNRs. The result 
shows the proposed method outperform the averaging. 

 
 

Figure 5- Evaluation of amplitude reconstruction by LS approach. (a) True 
ABR (b) simple averaging (c) LS approach  

 
 

 
Figure 6- Comparison of True ABR (dotted line) to (a) reconstructed signal 
using ‘Spectral Subtraction’ and Recursive phase using bispectrum and (b) 
simple averaging 



 

 

 
Figure 7- Averaged correlation coefficient against different SNRs for 
proposed method (solid line) and the averaging (dotted line) 

 
IV. CONCLUSION 

 
The performance of bispectrum estimators as well as the 
Fourier amplitude and phase reconstruction methods from 
bispectrum deviates by decreasing the SNR. We evaluated 
these performances at different SNRs. The result shows that 
the recursive phase reconstruction algorithm using the 
average signal information does not deviate much by the 
decrease in SNR, however the amplitude reconstruction 
methods all fail in low SNR. To overcome this, use of second 
order algorithm such as ‘Spectral Subtraction’ has been 
proposed. The performance of the proposed combination has 
been assessed and showed that this method outperforms the 
averaging. 
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